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Aims 
The aim of this task is to identify and develop remote sensing methods that can be used to supplement 

conventional monitoring techniques in the monitoring of marine habitats in the Finnish sea area. This 

deliverable specifically highlights the advantages and limitations of these methods. The marine habitats 

selected for remote sensing piloting mainly consist of submerged habitat forming species and are thus of 

great interest when assessing the marine state, conservation and restoration efforts. In addition to the 

submerged habitats, we also consider coastal reed beds as they can both form mosaics rich in underwater 

biodiversity, as well as expand, driven by eutrophication, and outcompete more sensitive species. 

Even with challenges including, water turbidity, and weather conditions, remote sensing methods have the 

potential of capturing changes over large spatial scale in a cost-efficient manner, but capturing the full extent 

requires joint use with acoustic methods (Forsblom et al. 2024). 

Introduction 
Suitable imagery for mapping aquatic vegetation can be acquired from several sources with varying spatial 

and spectral resolutions. Publicly available satellite imagery such as Sentinel-2 and Landsat programs offer 

imagery with medium to high spatial resolution of 15-10 meters and spectral range from the visual 

wavelengths to far infrared. Commercial optical satellite imagery comes with varying sensors yet offers 

higher spatial resolution (typically in range 0.3-5 meters) than Sentinel-2 or Landsat and usually covers at 

least the visible wavelengths and near infrared. Aerial orthophotos are regularly collected every few years 

for the same area by National Land Survey of Finland (NLS) which are publicly available and offer sub-meter 

spatial resolution but are distributed as 8-bit RGB images. However, the aerial images offer an open data 

source to observe detailed information about the aquatic vegetation cover and fragmentation. Finally, 

drones can acquire imagery at ultrahigh detail with centimetre-scale spatial resolution, but the extent of the 

mapped area is most limited. Drones carry most often a common RGB camera, but multi- and hyperspectral 

sensors are also available.  

Observing submerged aquatic vegetation (SAV) via optical remote sensing sensors is limited by absorption of 

electromagnetic radiation in the water column. Hence, water quality, colour and water transparency affect 

how light is absorbed, transmitted and reflected in the water and what can be observed. In general, 

wavelengths beyond visible light are quickly absorbed by water. Considering this, optical remote sensing 

methods for mapping underwater aquatic vegetation are not equally applicable to all areas in Finnish coastal 

waters. Also, detecting the lower growth limit of vegetation is often difficult to determine from optical 

remote sensing imagery due to limited water transparency. Acoustic sonar sensors can be used to 

complement optical imagery or to map areas where water quality prevents the use of airborne remote 

sensing and therefore acoustic methods have been piloted as well. However, similarly to drone data, the 

areal extent that is feasible to map is limited. 

 

Material and methods for targeted habitats 
Finnish marine biodiversity has been mapped for the past 20 years in the VELMU inventory programme 

(Forsblom et al. 2024) which provides substantial amount of in-situ point observations. This data is used as a 

baseline to target remote sensing monitoring to certain habitats (Table 1). As the inventory data may have 

large temporal offset to remote sensing imagery, additional field work has also been conducted in piloting 

remote sensing methods to reduce the temporal mismatch between in-situ and remote sensing observations.  

 



   

 

   

 

Table 1. Habitats and piloted remote sensing methods 

Habitat Objective Method Scale 

Reed beds Extent monitoring Satellite remote sensing, 
Bayesian data analysis  

National 

Seagrass meadow Extent, condition Drones, Aerial photos, 
Satellite remote sensing, 
Acoustic methods 

Local or regional 

Fucus beds Extent, condition Drones, Satellite remote 
sensing, acoustic 
methods 

Local or regional 

Sheltered stonewort 
habitats (lagoon) 

Extent Drones Local 

Exposed stonewort 
habitats 

Extent Aerial photos, Satellite 
remote sensing, acoustic 
methods  

Local or regional 

 

Coastal reeds (Phragmites sp., Typha spp., Schoenoplectus spp.) 
This activity focused on the detection of emergent macrophytes of the red-list habitat R04 Coastal reeds. The 

detection is based on soil-adjusted vegetation index (SAVI) and distance from shore. SAVI measures the 

reflectivity of vegetation at near-infrared to the reflectivity at red wavelengths but does not saturate at high 

values as quickly as the more typical normalized-difference vegetation index (NDVI). Leafy vegetation stands 

out from water in terms of SAVI (and NDVI) because water strongly absorbs infrared radiation, whereas 

leaves reflect it to protect the plant from overheating. The method used for this activity was originally 

developed during Blue Carbon Habitats project (2021) financed by Nordic Council of Ministers – Ocean and 

Climate Group (Koponen et al. 2022) and improved during BlueLakes project (RRF-funding, 2024–2025) for 

inland waters and now Biodiversea A6 for coastal habitats. Whereas these previous applications of the 

method used NDVI, the evolutions carried out under Biodiversea are the first to use SAVI. 

The coastal reeds detection method is not limited to strictly monospecific stands of common reed 

(Phragmites australis) but can be sensitive to other emergent macrophytes growing in shallow water near 

the coastline (e.g., bulrushes, sedges). However, the detection method has been trained with Phragmites 

data, and since the common reed has large horizontally growing leaves, they typically have characteristically 

high SAVI (and NDVI) values since they obscure the visibility to the water surface when viewed from above. 

Therefore, it is expected and also known from previous experiments, that most of the areas mapped by this 

method still represent stands of common reed. 

Input data. We downloaded reflectance band mosaics for Sentinel-2 satellite for the full mission (2016–2025) 

from the S2GM service (https://s2gm.land.copernicus.eu/), yearly time periods between 15 June to 15 

August in a 10-m spatial resolution. Next, we computed the yearly SAVI index maps from these data for all 

areas that lie strictly within the sea areas as defined by the Velmu sea mask. We also computed a ’proximity 

raster’ in the same spatial scale and with the same spatial extent as the SAVI rasters, where each pixel tells 

the Euclidean distance to the nearest shoreline in meters. These two variables, SAVI and distance, were used 

as the input features for the classification method. 

https://s2gm.land.copernicus.eu/


   

 

   

 

For in situ data of reed occurrence, we used the monospecific Phragmites sp. observations from Velmu field 

inventory data. We clustered the observations to find the ~25 most extensive reed areas of the dataset and 

used very-high resolution satellite imagery (Copernicus Contributing Missions, VHR Image 2018, 2021, and 

2024 datasets) and aerial orthophoto interpretation (National Land Survey) to digitize the outer margins of 

the reed belts. Next, we marked points along these margins at every 60 m segments and extracted 3×3 

windows of NDVI data around the points. This resulted in ~20,000 sampling points of roughly 50:50 

composition of reeds and non-reeds. The non-reeds could in this case include the open water areas adjacent 

to reed belts, sparse stands of helophytes, or macrophytes presenting another growth form (e.g., 

nymphaeids and elodeids). 

We also randomly chose 100 monospecific Phragmites sp. stands from the Velmu inventory data and used 

the same imagery as described above to digitise the thicknesses of the reed belts in direction perpendicular 

to the coastline. 

Method. Our methodological assumptions are that reed belts’ thicknesses are distributed as 𝑡 ~ Exp(𝜆), the 

SAVIs of non-reed and reed are distributed as 𝑋non−reed ~ 𝑁(𝜇non−reed, 𝜎non−reed
2 ) and 

𝑋reed ~ 𝑁(𝜇reed, 𝜎reed
2 ), and that at a random location at the shoreline, the shore hosts vegetation at a 

constant probability 𝐶. With these assumptions, we use a Naïve Bayes (NB) -like method to predict the 

posterior log-likelihood ℓreed(𝑥, 𝑑|𝜃) of a new observation (𝑥, 𝑑) (where 𝑥 is SAVI and 𝑑 distance from shore) 

representing coastal reeds, against it representing non-reeds. The log-likelihood is interpreted in this way: 

the value ℓreed = 0 represents the decision threshold, ℓreed > 0 that reed is more likely than non-reed, and 

ℓreed < 0 that non-reed is more likely than reed. Here, 𝜃 represents the parameters on which the 

interpretation is conditioned, namely 𝜇non−reed, 𝜎non−reed
2 , 𝜇reed, 𝜎reed

2 , 𝜆, and 𝐶. Other parameters can be 

derived from the data empirically, but 𝐶 has proved to be difficult to measure. Therefore, we optimized 𝐶 to 

give a maximally 50:50 separation between reeds and non-reeds in the training dataset, whereas other 

parameters were fixed to their empirically determined values. 

This part of the work is also being worked on in a scientific manuscript (Väkevä et al., in progress). Queries 

about the exact methodology can be directed to the lead author. 

Results. Based on our empirical data, the reed belt thickness scaling length is 𝜆−1 = 35.7 m. This means that 

the median thickness of reed belts is ln 2 ⋅ 𝜆−1 ≈ 10.7 m. Therefore, about half of the coastal reeds are less 

than 1 pixel wide in the Sentinel-2 data, making their detection uncertain. Fitting a bimodal normal 

distribution in the SAVI values of the training dataset gives 𝜇non−reed = 0.01, 𝜎non−reed = 0.16, 𝜇reed =

0.54, and 𝜎reed = 0.15, with the component weights 𝑤non−reed = 0.50 and 𝑤reed = 0.50. The empirical 

distributions of the data are seen in Figure 1. Using ℓreed = 0 as the decision threshold for classification and 

𝜆−1 = 30.0 m as the scale parameter, we ended up using the value 𝐶 = 0.40 because it gave a sufficient 



   

 

   

 

separation between reed and non-reed targets in the training dataset, and increasing it further did not 

considerably change the log-likelihood values nor the final classification. 

 

 

Figure 1: Distribution of SAVI index at the neighborhoods of reed margins (yellow histogram) and in open-water areas further away 
from the shoreline (blue histogram). The neighborhoods of reed margins are composed of reed and non-reed pixels in roughly 50:50 
proportion. The fitted bi-modal normal distribution is shown as a black curve and its components in green and orange dashed curves. 
Our method essentially probes the likelihood of an observed SAVI value to belong to the right component (reeds) in the bi-modal 
distribution, against it belonging to the left component (other main belts/water), and also takes into account the pixel’s distance from 
the closest seashore. 

The log-likelihood interpretation of coastal reed occurrence is exemplified over a demonstration area in 

Southwestern Finland in Figure 2. It is seen that the method separates well and objectively reed targets 

from non-reed targets and is also sensitive to reed belts in various stages of succession. ℓ = 0 turns out to 

be a fairly good discriminant between reeds and non-reeds. 

 

Figure 2: Left: true-colour Pléiades-1B image from the Baltic Sea coast in the municipality of Vehmaa, Southwestern Finland, in 2 July 
2024. Contains modified Copernicus Contributing Mission data from the IMAGE2024 collection.  
Right: Same scene, overlaid with the log-likelihood of Sentinel-2 mapped pixels representing coastal reeds. The decision threshold 
(ℓ = 0) is indicated in white colour, and reddening colours have increasing likelihoods of representing coastal reeds (ℓ > 0). Contains 
modified Copernicus Sentinel-2 data, Syke (2025). Note that the method does not account for the landward side of the shoreline. 



   

 

   

 

The bar chart in Figure 3 shows the annual time series of reed belt total areas over the duration of the 

Sentinel-2 mission. Here, reeds are defined as pixels with ℓ > 0, and their total area is simply the count of 

pixels multiplied by 10 m × 10 m (the area of a single pixel). As a comparison, the red bars show the reed 

total areas computed using the method that is implemented in the CORINE Land Cover classification. The 

Bayes method predicts larger total areas for the Finnish coast, on average. 

 

Figure 3: Annual time series of total reed belt area along the Finnish coast during the Sentinel-2 mission. Bayes = this work, CORINE = 
reference method used for producing the Salt marshes (aquatic) land use class of the Finnish CORINE Land Cover dataset in 2025 (M. 
Törmä et al., pers. comm.). 

Summary. The Bayesian method enables the generation of an annual time series that aligns well with the 

CORINE reference approach. However, it is more objective as it relies on few adjustable parameters, most of 

which can be derived directly from remote-sensing data without auxiliary field sampling. Compared to 

CORINE, the method is simpler to apply as it requires only two reflectance channels and does not depend on 

water depth information. Since it is a probabilistic classification framework, it also opens possibilities for 

mapping other main belts of macrophytes; the user can shift the decision boundary to accept more uncertain 

areas as vegetation.  

Like all methods based on vegetation index mosaics, the method is sensitive to data availability and 

cloudiness throughout the year, which can cause irregular boundaries in the posterior probability estimates 

even within homogeneous macrophyte stands. This is particularly well seen in 2016 and 2017 when Sentinel-

2 mission only had one satellite in operation. It also requires a sea-shore mask and cannot detect reed beds 

on the landward side of the shoreline. The shoreline in national geodatabases typically represents mean-

water conditions, but practical water-level fluctuations can expose or submerge vast areas of the shore. Reed 

beds extending far from the shoreline (>500 m) may be misclassified as unlikely reed areas because even 

very high SAVI values do not give enough support to convince the method that the pixel is not a cloud error.  

While the method can provide preliminary identification of coastal reed stands in a broad sense, species-

level accuracy remains limited and may require complementary approaches (e.g., reflectance time series 

analysis). Further development especially for the scientific publication should focus on comprehensive, data-

driven validation and the regional trend analysis within the provinces of Finland. 



   

 

   

 

Seagrass meadows 
 

Southern coast of Hanko peninsula hosts some of the largest seagrass meadows on the Finnish coast and 

therefore the area is most suitable for piloting different monitoring methods. Besides the main seagrass 

species Zostera marina, the meadows consist other vascular plants and algae, forming mixed communities. 

These meadows are clearly visible from good quality remote sensing imagery where the SAV in general can 

be mapped. Detailed data collection in small areas within Kolaviken was made for estimating the amount of 

Zostera marina within the meadow. Other piloting efforts focused on mapping the SAV extent from optical 

remote sensing and how underwater acoustic methods may complement these in defining the lower growth 

limit and vegetation height. 

SAV mapping from optical satellite remote sensing 
Data and methods 

Drop-video and dive point observations from Velmu inventory dataset were used together with additional 

field observations collected from Kolaviken (Figure 4). The vegetation coverage from the point observations 

was aggregated to form classification labels so that points with total vegetation cover < 30 were considered 

bare or low vegetation, >= 30 as SAV, and all points with depth > 6 meters as deep water. The point labelling 

was additionally evaluated visually against different resolution satellite images because of temporal offset 

between the points and satellite images, and to exclude points where observation contradicted what was 

visually interpretable from image. 

 

Figure 4. Map of the pilot area with labeled point observations 

Image classification was made following object-based image analysis (OBIA) principle where an image 

segmentation algorithm is used to form clusters (or segments) of adjacent pixels that share similar values. 

The points are then overlaid over the segments and habitat defined for the whole segment based on the 

point observations. These segments of pixels and their corresponding masks of semantic classes were then 

used in training machine learning algorithms for classification. Three common algorithms, namely Random 

Forest (RF), Support Vector Machine (SVM) and Extreme Gradient Boosting (XGB) were compared. 10-fold 

stratified grouped K-fold cross-validation was used to split the data to train and test sets and evaluate the 

model. Models were evaluated using common metrics: overall accuracy, producer’s accuracy (precision) and 

user’s accuracy (recall). Grouping was done on segment level so that pixels within a segment could either be 

only in train or test set. This was done to account for spatial autocorrelation of pixel values and to better 

estimate the generalizability of the model. This workflow was tested both on very-high resolution WV-2 

satellite image (taken 20.07.2022) as openly available Sentinel-2 satellite image (taken 21.07.2022). 



   

 

   

 

Results 

All the ML algorithms showed similar performance, average overall accuracy being between 90-95% for WV-

2, and around 85% for Sentinel-2. Main differences between the models are visible in amount of variance in 

performance between different folds and semantic classes (Figure 5, Figure 6).  

 

Figure 5. Model performance comparison from 10-fold stratified K-fold estimation for WV-2 image classification 

Deep water class showed lowest variance between the folds whereas bare sediment and SAV classes had 

higher variance.  

 

 

Figure 6. Model performance comparison from 10-fold stratified K-fold estimation for Sentinel-2 image classification 

Prediction map examples (Figure 7, Figure 8) show XGB classification probabilities above 0,75 for SAV for the 

different resolution WV-2 and Sentinel-2 satellite images.  



   

 

   

 

 

Figure 7. Mapping of SAV extent from WorldView-2 satellite image. Smaller images show examples of classification probability for 
SAV for each subarea from left to right respectively. Bottom image shows the RGB visualization of the Worldview-2 over the study 
area. Probabilities below 0,75 are cut off for visualization purposes 



   

 

   

 

 

Figure 8. Mapping of SAV extent from Sentinel-2 satellite image. Smaller images show examples of classification probability for SAV 
for each subarea from left to right respectively. Bottom image shows the RGB visualization of the Sentinel-2 over the study area. 
Probabilities below 0,75 are cut off for visualization purposes.   

Area comparison of the prediction results from the two different spatial resolution sensors shows higher area 

estimates for the VHR image (Figure 9). For smaller subareas the area estimates show larger differences 

whereas the area estimate for the larger region shows about 17% difference. Differences may be explained 

by 1) better classification accuracy near the edges of vegetation patches in VHR image and therefore larger 

area cover, 2) better classification accuracy and/or overestimation near the deep water threshold which 

seems more conservative in Sentinel-2 prediction based on visual estimate.  



   

 

   

 

 

Figure 9. Comparison of areal extents from WV-2 and Sentinel-2 satellite data. 

Summary 

Mapping SAV extent on seagrass meadows performed well on both WV-2 and Sentinel-2 imagery. WV-2 

showed higher accuracies which is likely due to the higher spatial resolution (2m) compared to Sentinel-2 

(10m), as higher resolution sensors are capable to detect smaller scale fragmentation (Schütt et al, 2025). 

However, open access and continuous collection of Sentinel-2 data makes it very useful for large scale 

mapping of larger vegetation patches whereas the VHR satellite imagery may be used when more detailed 

mapping is needed.  

Detecting the lower growth limit from echo sounding and dropvideo 
The vegetation coverage of the site Kolaviken has been mapped within the Biodiversea project using remote 

sensing methods. The characteristic growth pattern of eelgrass (Zostera marina) on flat sandy and gravel 

substrates provides favorable conditions for the application of acoustic remote sensing techniques in 

monitoring these meadows. Due to water turbidity, optical remote sensing methods (e.g., drone RGB 

imaging) are often unsuitable during the growing season for mapping the lower boundary of the vegetation. 

To determine the lower limit of eelgrass beds, side-scan sonar and echo sounding were tested. 

Echo Sounding Methods 

The side-scan sonar system used was DeepVision DE3468D Dual 340/680 kHz (horizontal beamwidth: 

0.9°/0.5°, vertical beamwidth: 60°/60°). The transducer was mounted securely to the vessel’s side to ensure 

accurate sensor positioning. During side-scan sonar surveys, data was recorded using DeepVision DV5.0 

software (license B10252), and positional information for the sonar was collected with a DIGITAL YACHT 

GPS160 USB TriNav GPS/GLONASS/Galileo receiver. Preliminary data processing was performed in 



   

 

   

 

DeepVision DV5.0, while further analysis and interpretation of the lower vegetation boundary from 

sonograms were carried out in ArcGIS Pro, where the boundary was manually digitized. Side-scan sonar 

surveys for mapping the lower vegetation (Zostera marina) boundary were repeated in 06/2024, 09/2024, 

and 10/2025. In 10/2025, the position of the lower vegetation limit was determined using a high-precision 

echo sounder (DeepVision RTK Dual Frequency Down Scan, 700/200 kHz, 3° opening angle, AHRS).  

 

Verification of Sonar Data 

Acoustic data were verified through video recording (HD drop-video transects). For species verification, HD-

video camera was used to confirm vegetation cover, species composition, and vegetation boundaries. As a 

more continuous alternative to point-based species observations, drop-video transects were tested as a new 

method to validate species presence and delineate the edge of continuous vegetation. Positioning was 

recorded with a Trimble TDC-6000 device (RTK) at 1–2 second intervals, with an average spatial accuracy of 

external RTK-antenna less than 5 cm. 

Video recordings were captured in HD quality (GoPro Hero 5 Black, resolution 1080p, 30–48 fps, FOV 

Superwide, with flat lens dive housing). From the video footage, the following were analyzed: substrate type 

(Velmu classification), vegetation presence/absence, eelgrass coverage, other perennial vegetation species 

and coverage. A live video feed was transmitted to the surface via Wi-Fi, and the camera altitude was 

maintained at an appropriate level to ensure reliable identification of macrophyte species and eelgrass. 

Results 

Side-scan sonar data provide a reliable overview of eelgrass (Zostera marina) distribution down to the lower 

vegetation boundary, which is often beyond the reach of other remote sensing methods due to water 

turbidity. Simultaneous remote sensing data with field inventories from alternative sources may be limited 

because of factors such as satellite overpass schedules, cloud cover, water turbidity, wind, and wave 

conditions affecting drone imagery. 

Interpretation of the lower eelgrass boundary from side-scan imagery was successful in 09/2024, even in 

cases where some drifting filamentous algae partially covered the vegetation. Based on these findings, 

surveys aimed at delineating the lower boundary should be conducted late in the growing season, when 

vegetation biomass is increased and boundaries within the mosaic community are more distinct. In early 

summer, abundant loose filamentous algae increase the likelihood of misinterpretation. In the case of 

Kolaviken, a single well-placed side-scan transect can provide spatially accurate data for the lower boundary 

(Figure 10). 



   

 

   

 

 

Figure 10. Lower eelgrass boundary interpreted from side-scan sonar imagery. Aerial photographs © National Land Survey of 
Finland 

Based on side-scan sonar results, all together 14 RTK down-scan transects were positioned along the lower 

boundary and verified lower growth limit using simultaneous HD-quality drop-video transects (Figure 11). On 

the sonar transects, the lower boundary of a continuous vegetation cover of the seagrass bed was on average 

at a depth of 5.7 meters (min 4,9 m and max 6,5 meters). 

 

Figure 11. RTK down-scan transects were positioned along the lower boundary. Together with the HD-video transects confirmed 
lower boundary of the Kolaviken eelgrass meadow. 



   

 

   

 

Comprehensive side-scan acoustic data can provide a good overall picture of changes in the distribution of 

the occurrence eelgrass meadows or detect structural changes eelgrass habitat in areas where optical remote 

sensing methods are not available, for example due to water turbidity. For more precise measurements and 

for ground truthing, a combination of high-resolution echo sounding and drop-video transects is 

recommended.  

 

Changes within SAV coverage with aerial image time series 
Study area  

The study area is located in Kolaviken, Hanko, in the Southernmost peninsula of Finnish coast.  

Aerial image dataset 

The whole Finland is repeatedly covered with aerial images in every 3 to 5 years by NLS. This dataset offers 

feasible solutions to support operational monitoring of underwater habitats. The NLS dataset contains four 

repeated flights in Kolaviken (24042013, 14062017,  06062022, 14062025) with RGBN orthomosaics and a 

black and white ortho from 20042008. In addition MH holds aerial image datasets from Kolaviken from 

30062002 and 14102014. In June 2024 the study area was flown with DJI Mavic 3M RTK drone at 120 meter 

altitude and spatially accurate orthomosaic was generated using OpenDroneMap software at CSC’s Puhti 

supercomputer environment. Together, these datasets offer a nice opportunity to test how well aerial images 

can detect SAV and SAV dynamics in the study area.  

NLS images are RGBN images with 50cm resolution. These images are offered freely in tiles and are within 

map like accuracy. MH images are RGB images with 30cm resolution and they are georeferenced manually 

to correspond the spatial accuracy of the NLS images. The drone orthomosaic is a RGB image with 5cm 

resolution.  

We piloted the potential of mapping SAV dynamics in an area of interest (AOI) (Figure 12) within Kolaviken 

by calculating SAV area change from 2002 to 2024 and choosing a ten-year span from 2014 to 2024 to visually 

inspect the changes.  



   

 

   

 

 

Figure 12. Study site and area of interest within Kolaviken. Base map and Aerial photographs © National Land Survey of Finland 

 

Aerial image processing 

The images were individually classified as SAV/no SAV. This was done first by segmenting the aerial images 

into segments. The segmenting considered spectral, spatial and minimum mapping unit (MMU) parameters. 

These parameters needed to be fixed on every image separately, as the conditions were not comparable. 

Our aim was to cover the SAV area with very small details to detect small changes in cover. Thus, we used 

very detailed segmenting approach.   

Secondly, the segments were assigned as SAV or no SAV classes based on visual interpretation. These 

selected segments were used as training data for the SAV model. This is relatively straightforward 

interpretation based on the image. Next the segmented image was classified with Random Forest algorithm 

with default parameters. The accuracy of the SAV models was visually inspected by comparing them to 

corresponding aerial photograph and the segmentation procedure was repeated if any clear inaccuracies 

were found. 

Change detection of SAV 

The extent and spatial characteristics of SAV dynamics were calculated based on the built SAV models. To 

visualize the SAV dynamics along the time span of 2014 to 2024 the images coded and overlayed. Each layer 

is coded following multiplier 10n-1 (Table 2), where n is number of layers starting with the most recent. 



   

 

   

 

Table 2. SAV model coding for overlay analysis 

Image SAV no SAV 

2014 10 0 

2024 1 0 

  

The spatial overlay enables detailed scrutiny of changes temporally and spatially. Code 11 in the overlaid 

dataset corresponds to permanent SAV and code 0 to permanent no SAV. The rest of the coding category 

refer to temporal changes in SAV i.e. increase, decrease. 

Results 

The SAV changes within the AOI in Kolaviken are shown in Table 3 below. The approach shows that the SAV 

area has been steadily increasing in Kolaviken.  

Table 3. Total SAV extent within AOI from 2002 to 2024. 

 2002 2014 2017 2024 

SAV area 167678 m2 232522 m2 230418 m2 254310 m2 

  

The spatial characteristics of SAV change are shown in the Figure 13 below.  The change shows some clear 

spatial patterns while most of the SAV area has been permanent between 2014 and 2024. 

 

Figure 13. Spatial representation of SAV changes in Kolaviken AOI. Aerial photographs © National Land Survey of Finland 

 

  

 



   

 

   

 

Conclusions 

Aerial images are feasible and effective datasets to map the extent of SAV and its changes. Our piloted 

approaches were methodologically successful and offer robust methodology for SAV monitoring relying on 

NLS data. The NLS aerial image program offers operational monitoring standard within every 3 to 5 years and 

therefore creates a feasible backbone for monitoring SAV. 

However, the aerial images cannot be used in interpreting SAV at species level.  The next steps are to move 

from SAV to dominant species change. This can be done by sampling the vegetation and extrapolating the 

information based on SAV maps.  

Furthermore, the timing of NLS aerial image is not suited for mapping underwater species. The images are 

often acquired in late spring/early summer, when SAV is not yet in full growth. Therefore, based on this pilot 

we suggest that the NLS aerial image catalogue should be complemented by acquiring additional aerial 

images from late summer. 

 

Detailed echo sounding and drop video for estimating amount of Zostera marina within the 

meadow  
Study area  

The study area is located in Kolaviken, Hanko, in the Southernmost peninsula of Finnish coast.  

Approach 

The SAV models are informative in monitoring general vegetation extent and its dynamics. However, they 

are not providing information on the dynamics of species and their abundances which can indicate 

environmental changes. To move forward from SAV models to species level models, systematic and well-

planned vegetation surveys are needed. Here, our aim is to develop approach for eelgrass cover estimation 

in Kolaviken.  

The approach is based on dense sampling of a selected study areas within Kolaviken. The sample areas 

represent different sub-areas within the bay, referring to depth ranges and structure of SAV. During autumn 

2025 two first test sites were selected and surveyed (Figure 14). The sample areas were surveyed using 

DeepVision RTK Dual Frequency Down Scan sonar that offer spatially accurate information on depth and 

vegetation height. In addition, underwater video footage was recorded with GoPro that is spatially linked to 

downscan sonar location data. This setting enables us to evaluate the extent and volume of SAV within the 

sample area, and also to estimate the cover of eelgrass and other species within the area. We will monitor 

the vegetation cover, height and species dynamics within the selected sample areas in the coming years. 

 



   

 

   

 

 

Figure 14. Sub areas and dense survey points in Kolaviken. Aerial photographs © National Land Survey of Finland 

 

Habitat summary 
SAV can be mapped using various optical remote sensing sensors in areas typical for seagrass meadows 

habitat where vegetation patches alternate with sandy substrate. Satellite missions such as Sentinel-2 have 

satellite overpasses every few days and therefore offer data that can be aligned temporally, but the 10-meter 

spatial resolution is unable to capture the small-scale changes. Colored aerial image or VHR satellite image 

archives can be used to acquire snapshots of past SAV extent with very high spatial resolution, yet challenges 

may arise from varying timing of aerial image collection in relation to vegetation growth peak, leaving some 

uncertainty to change detection and how much of the change is explained by seasonal variation. Studying 

the seasonal change that is observable from remote sensing sensors in seagrass meadows extent would help 

to remove uncertainty regarding comparisons over different years and seasons. Echo sounding may be used 

to detect lower growth limits where it is not identifiable from optical remote sensing. As differentiating 

eelgrass from other vascular plants within the meadow is not possible from optical remote sensing, drop 

video recording may be used to verify the habitat type. Piloting will continue to create monitoring time series 

and the combined use of different sensors.  

 

  



   

 

   

 

Fucus habitats  
Fucus beds can be found on hard rocky substrate across the Finnish coast from the eastern Gulf of Finland to 

Kvarken in the northern Bothnian Sea. This area has varying water conditions within sub-basins and notable 

differences in underwater geomorphology from steep cliffs to gentler slopes with varying substrate. These 

conditions make it difficult for one remote sensing method to be applicable for all areas and therefore 

different methods have been piloted in pilot sites (map). 

Mapping Fucus beds from optical remote sensing imagery and point observations 
Mapping Fucus from optical remote sensing images has been piloted on different spatial resolutions and 

sensors from drones to satellites. Based on existing research brown macroalgae has distinguishable spectral 

features (Kotta et al. 2014) and has been mapped with hyperspectral and multispectral sensors (Vahtmäe et 

al. 2021). However, water quality, depth and species composition affect how separable brown macroalgae is 

from other vegetation, green or red algae.  

Study area 

Using existing point observations to map Fucus has been piloted for a subregion near Pori in the Bothnian 

Sea (Figure 15). The area has extensive Fucus beds mixed in various degrees with other vegetation and 

seafloor varying between hard bottoms and soft sediment. 

 

Figure 15. Map of study area with labelled Velmu point observations. 

Data and methods 

Velmu point observations from 2016-2023 were aggregated to broader semantic groups of brown algae, 

other SAV, bare or low vegetation cover seafloor, and deep water for image classification. Observations were 



   

 

   

 

selected from a longer time span despite the temporal mismatch to satellite image to have enough 

observations of different classes at different depths over the pilot area. Also, Fucus is considered relatively 

stable perennial habitat except the most shallow areas susceptible to ice scouring, and therefore it was 

assumed that observations would be representative. Image classification was piloted on Sentinel-2 image 

from July 12th 2023, and for a Worldview-2 VHR satellite image from September 8th 2014. The points were 

used in similar OBIA workflow for satellite image classification as described in SAV mapping section. Spectral 

plot of Sentinel-2 pixels sampled to the points show how the spectral values averaged at 1-meter depth 

interval change between the classes at the pilot area (Figure 16).  

 

Figure 16. Spectral plot of Sentinel-2 pixels sampled at VELMU point observations in the study area and averaged to 1-meter depth 
intervals.Deep water class was added to each subplot as reference spectra for an area which is considered optically deep and light is 
not reflected from the sea floor. 

Results and discussion 

Extreme gradient boosting (XGB) model was used and its performance estimated in 10-fold grouped stratified 

cross-validation for both images (Table 4). Cross-validation results show that predictions made for unseen 

data have high uncertainty apart from deep water. This is likely due to spectral resemblance of classes.  

 

 

 

 

 



   

 

   

 

Table 4. Cross-validated mean accuracy metrics for XGB image classification. 

 Sentinel-2 VHR satellite (WorldView-2) 

 

Overall 
accuracy Precision  Recall 

Overall 
accuracy 

  

 0,74   0,71 Precision Recall 

Deep  0,89 0,90  0,85 0,78 

Fucus  0,45 0,27  0,68 0,61 

Low  0,33 0,14  0,35 0,14 

Other SAV  0,57 0,73  0,68 0,82 

 

Higher spatial resolution seems to improve classification results especially for the vegetation classes. Low 

accuracy for low vegetation cover may be because of the class accounted for less than 10% of samples and 

that low vegetation cover may occur on different substrates that are not spectrally similar, e.g. mud, sand, 

or rock. After filtering misclassifications in deep water area, visual inspection of the Sentinel-2 prediction of 

Fucus probabilities show that predictions are located over vegetated patches and not randomly scattered 

(Figure 17).  

 

Figure 17. Predicted probability map for Fucus presence (above) and RGB visualization Sentinel-2 image (below) in pilot site.  

A more detailed comparison of Fucus prediction probability maps to a drone orthomosaic shows that both 

satellite predictions align with areas that have Fucus cover, and predictions mostly avoid shallow water areas 

with low vegetation (Figure 18). However, as single drone orthomosaic can cover only relatively small area 

compared to satellites, similar validation should be done at different sites to have better estimate to what 

extent Fucus predictions are reliable.  



   

 

   

 

 

 

 

Figure 18. Fucus predictions from WorldView-2 and Sentinel-2 satellite images over drone orthomosaic. Underwater images show 
examples of different seafloor cover in the area. Underwater video was collected along with drone imagery and was done by wading 
from shore. 

Using point-based field observations only to predict Fucus cover relies on samples collected from 

representative locations and at different depths to show the spectral differences between Fucus and other 

vegetation. Still, point observation may not account for variation in seafloor and vegetation cover at the pixel 

scale which leaves some uncertainty for training the model. Also, water conditions may vary between 

sheltered and exposed areas within single satellite image making predictions even more difficult. However, 

the examples show that despite uncertainties predictions can produce meaningful results. Further piloting is 

continued to develop methods and more extensive validation.  

Upscaling drone information to larger spatial extent 
Drone imagery was piloted to acquire very detailed information on wide Fucus belts and to use that in 

combination with coarser resolution satellite image to provide estimates of Fucus presence for larger area. 

Data and methods 

Drone imagery was collected between June 3rd and 7th in 2024 in northwestern Åland archipelago (Figure 19). 

Flights were done using DJI mavic 3M drone at 120-meter altitude and with minimum 75% frontal and side 

overlap. Five ground control points (GCP) were distributed across the mapping area and high accuracy RTK-

GNSS coordinates were measured using Emlid Reach 2+ GNSS. Due to some connection issues during the 

flights the high accuracy RTK for the drone was disabled and the accurate image positions were post 

processed in RTKLib software using the observation and navigation information from FINPOS service by NLS. 



   

 

   

 

Post processed image data was then imported with GCPs to Open Drone Map software which was used to 

compute the orthomosaics.  

 

Figure 19. Map of the study area with two drone orthomosaics that were collected. The grey area in inset map shows the coverage of 
the Sentinel-2 tile that was used to test upscaling. 

Dive and drop-video observations were used together with visual interpretation to annotate polygons of 

different habitat types for image classification. Image pixels were then extracted within the polygons and 

used in training machine learning models for image classification. Fucus prediction map from the drone 

orthomosaic was then aggregated to 10-meter grid polygons by computing mean coverage of Fucus in each 

grid cell. Grid cells with mean coverage >= 30% were used to train a model for predicting Fucus presence 

from Sentinel-2 image. Sentinel-2 tile T34VDM that covers the northwestern region of Åland was used from 

June 4th 2024, the same day the drone imagery was collected for training the model. Because of relatively 

small training dataset size from one drone mapping area, the results are at this stage compared visually to 

NLS aerial photographs and the second drone flight that was not used in creating training data.  

Results and discussion 

Fucus beds are quite separable in shallow water from bare rock but in deeper areas they are harder to 

distinguish from other vegetation or dark sea bottom features. Also, the Fucus beds in the drone 

orthomosaics seem to be most dense in the shallow water and become more scattered as the water depth 

increases. Image classification of drone orthomosaic performed with overall accuracy of 87%, and with 

precision of 85%, and recall of 97% for Fucus (Table 5).  

 



   

 

   

 

Table 5. Confusion matrix and accuracy metrics for drone orthomosaic classification 

 bare deep fucus sav Total  Precision 
bare 30190 0 2975 1284 34449  0,92 
deep 0 3557 1007 24 4588  0,96 
fucus 266 161 29324 455 30206  0,85 
sav 2312 4 1368 2458 6142  0,58 
Total 32768 3722 34674 4221 75385   

        
Recall 0,88 0,78 0,97 0,40    

        
Overall accuracy 0,87       

 

Aggregating the drone prediction map to Sentinel-2 spatial resolution and selecting the pixels with mean 

cover => 30% resulted in 12720 pixels to train a model for classifying the Sentinel-2 image (Figure 20). A 

random forest model with default settings was used for classification.  

 

Figure 20. Drone orthomosaic with classified Fucus probabilities (left) and aggregated coverage percentage to Sentinel-2 resolution 
(right). 

Visual comparison of Sentinel-2 prediction map and higher resolution aerial images show that predictions 

mostly occur in regions that can visually be interpreted as likely Fucus beds (Figure 21). However, predictions 

do not capture the same areal extent that is interpretable from the high-resolution images, thus leading to 

underestimation of areal extent. This may be caused by the relatively small training dataset where samples 

are located in quite shallow water. Nevertheless, the demonstrated workflow shows promise in extracting 

very high spatial resolution information from drone imagery and upscaling that to coarser satellite resolution.  



   

 

   

 

 

Figure 21. Sentinel-2 prediction of Fucus presence using the drone derived training data. The colored rectangles in the top right map 
show the locations of the sample plots. 

Next steps for developing the described method would be to expand the drone classification of Fucus to as 

deep areas as possible, use more training data for Sentinel-2 classification by combining information from 

both drone mapping areas and test different models, make more thorough validation of the Sentinel-2 

prediction. The method could also be piloted in other sea areas, for example Bothnian Sea, and with other 

optical remote sensing data.  

Summary of optical remote sensing of Fucus  
Mapping the extent of Fucus using optical remote sensing is challenging as the spectral signal is easily mixed 

to other vegetation especially when water depth increases. In addition, a single 10 by 10-meter pixel may 

consist of a mosaic of various habitats instead of continuous Fucus monoculture, creating a mixed signal 

which may lead to inaccuracy and uncertainty when combining point observations to pixel information. 

However, pilot studies show that satellite sensors may provide meaningful predictions. Drones provide very 

high-resolution data that can be used to create training samples that correspond to spatial resolution of other 

remote sensing sensors which could be used to map Fucus in shallow waters over large spatial extents. 

Piloting is continued to improve models and validation, and to develop combined use of drones and other 

remote sensing imagery. 

Detection of Fucus beds using acoustic methods 
Echo Sounding Methods 

The side-scan sonar system used was DeepVision DE3468D Dual 340/680 kHz (horizontal beamwidth: 

0.9°/0.5°, vertical beamwidth: 60°/60°). The transducer was mounted securely to the vessel’s side to ensure 



   

 

   

 

accurate sensor positioning. During side-scan sonar surveys, data were recorded using DeepVision DV5.0 

software (license B10252), and positional information for the sonar was collected with a DIGITAL YACHT 

GPS160 USB TriNav GPS/GLONASS/Galileo receiver. Preliminary data processing was performed in 

DeepVision DV5.0, while further analysis and interpretation of the suitable bottom substrate was carried out 

in ArcGIS Pro, where the boundary was manually digitized. 

In 11/2025, the position of the lower vegetation limit for bladderwrack was determined using a high-precision 

echo sounder (DeepVision RTK Dual Frequency Down Scan, 700/200 kHz, 3° opening angle, AHRS) together 

with simultaneous HD-video transects. 

Verification of Sonar Data 

Side-scan sonar datasets were validated using 42 vegetation transects. In addition, during the 2025 season, 

further analyses will compare high-resolution down scan sonar data with the 2024 diving transect dataset 

(42 transects) as well as with other high-resolution video transect outputs. Species verification was carried 

out using so-called video transects, which confirmed the presence of bladderwrack (Fucus vesiculosus) along 

the simultaneous down scan sonar data. 

As a more continuous and spatially comprehensive alternative to point-based species verification, a new 

method—drop-video transects—was tested. These were used to confirm species composition and delineate 

the boundaries of continuous vegetation stands. The video recordings were of HD quality (GoPro Hero 5 

Black, resolution 1080p, 48 fps, FOV Superwide, flat lens in a dive housing). Live footage from the drop-video 

was transmitted to the surface via Wi-Fi, and the camera altitude was maintained at an appropriate level to 

ensure reliable identification of macrophyte species. 

Results 

The resolution of the side-scan sonar was not sufficient to delineate bladderwrack stands; instead, the data 

were used to interpret bottom substrate suitable for bladderwrack within the target area. The total area 

surveyed with side-scan sonar was approximately 34 hectares, of which about 15 hectares were digitized as 

suitable substrate for bladderwrack (Figure 22). During interpretation, no depth model with adequate 

resolution for the area was available. Therefore, the lower depth limit of bladderwrack stands will be 

determined in subsequent analyses using appropriate models and vegetation transects (42 transects). 



   

 

   

 

 

Figure 22. Areas surveyed with side-scan sonar (grey). Planned locations of vegetation transects (pink lines; 42 transects, each 100 
m long), and bottom substrate suitable for bladderwrack (Fucus vesiculosus), interpreted from side-scan sonar imagery (brown 
delination) 

 

Additionally, during the 2025 season, side-scan sonar data interpretation was validated using high-resolution 

down sonar and HD video transects. A total of 33 high-resolution sonar transects were surveyed, of which 29 

were verified at their shallow sections using HD video transects. 

Detailed analyses are still ongoing, but preliminary results indicate that high-resolution sonar is best suited 

for measuring the height of bladderwrack stands on flat substrates (i.e., smooth bedrock). In contrast, on 

bottoms typical of the Ulko-Tammio area—characterized by large boulders and stones—depth variations 

produce uneven bottom profiles in the sonar data. 

 

  



   

 

   

 

Stoneworts 
 

Sheltered stonewort habitats 
Study area 

The study area is located in Ruskiavuorenaukko, Uusikaupunki SW Finland (Figure 23). Ruskiavuorenaukko is 

a typical shallow water lagoon system in SW Finland experiencing high human pressure from the vicinity due 

to leisure boat traffic. Based on previous observation of NLS aerial image catalogue, submerged aquatic 

vegetation is abundant and somewhat permanent in the area. Since the lagoon system is ideal environment 

for charophyte communities, Ruskiavuoreanukko is a very potential place for charophyte existence and thus 

hosts an interesting location for testing charophyte mapping via drones.  

 

Figure 23. The study area. Topographic data © National Land Survey of Finland 

Drone imaging 

We used DJI Mavic 3 Multispectral drone for image acquisition in the study area. The Mavic 3 M is mounted 

with 20MP RGP sensor and 5MP multispectral bands (Blue, Green, Red, InfraRed, RedEdge). We used only 

the RGB sensor for the image acquisition. 



   

 

   

 

The Flight was executed on July 2nd early in the morning to minimize the effects of sun glint and refraction. 

The flight path was planned according to the sun direction, following the protocol for mapping shallow water 

habitats suggested by Joyce et al. (2018). However, we allowed the drone to capture images also when the 

flight direction was facing the sun.  We used 50m as flight altitude to avoid spatially too detailed mapping as 

we were interested to test the potential of drone imaging to recognize habitat dominant species. With 50m 

altitude the pixel size is still very detailed, ca inch per pixel. we used 75% as side and frontal overlap to 

optimize the following photogrammetric modelling. 

Drone image processing 

The drone images were further processed into orthomosaic in ESRI Site Scan application. Site Scan offers only 

a few options for decision prior processing and the actual photogrammetric procedure is a “black box” with 

no possibilities for adjustments. The georeferenced orthomosaic was further processed in ArcGIS Pro 

software. The orthomosaic was segmented based on spectral and spatial attributes. Segmentation merges 

pixels together according to the parameters set by the user. With drone imagery, segmentation prior further 

modelling reduces the computing time compared to original pixel-based approach. The segmentation 

parameters were chosen based on visual interpretation referring to the original orthomosaic. 

Reference data collection 

Reference data was collected on July 2nd with semi-autonomous surface vehicle mounted with Lowrance Elite 

9 chartplotter, downscan sonar sensor and depth adjustable GoPro 11 camera. The vehicle offers options to 

preplanned route development for mapping or manual mapping. The plotter is equipped with GPS receiver 

and records location in every half a second. The vehicle enables rapid mapping of relatively large and shallow 

areas providing location-based information on depth, vegetation height and structure and video footage of 

the habitat. 

In total 2 hours of video and ca 2000 sample plots with depth were collected for reference and validation 

purposes. 

Modelling and validation 

Training schema was designed based on the overall representation of the orthomosaic. Training segments 

were assigned to classes based on visual interpretation referring to original image. The classes were assigned 

as: Charales dense, Charales sparse, Bare bottom, Very shallow/Rock, Shadow and Turbid. The shadow class 

was created as drone image contained some tree shadows that are not spectrally corresponding to 

underwater habitat.  

The assigned segments were used to model the segmented image. Random forest classifier with default 

settings were used as modelling approach. 

Individual validation dataset was created based on the collected reference data. Ten points overlapping each 

class were chosen randomly and the model accuracy was assessed. 

 

Results 

The stonewort dominated community is clearly seen from the drone image and the classified model is 

representing well the habitat extent by visual judgement (Figure 24). 



   

 

   

 

 

Figure 24. Drone classification. Topograhic data © National Land Survey of Finland 

The video sample frames are shown below. 

 

Figure 25. Sample images from the class Charales dense 



   

 

   

 

 

Figure 26. Sample images from the class Charales sparse 

 

Figure 27. Sample images from the class Bare bottom 

Based on the samples the overall accuracy of the model is 77%. The lowest accuracy is within Charales sparse 

class, which is a challenging class to determine with the used methodology. The underwater camera is facing 

front, and it is not always clear to interpret the vegetation cover, especially as the water is turbid at times. If 

the classes are merged and the model is tested only for vegetation/no vegetation the overall accuracy is 83%. 

 

Exposed stonewort habitats 
Stoneworts in the Bothnian Bay may form continuous vegetation covers also in exposed areas where these 

may be identifiable from remote sensing imagery as SAV. However, the dark water colour in the Bothnian 

Bay limits the optical remote sensing method to very shallow areas, and preliminary field work indicates that 

stonewort habitat may cover vast areas that are not visible in optical remote sensing imagery. Therefore, a 

combination of remote sensing mapping and echo sounding with drop-video will be piloted for mapping the 

exposed stonewort habitats in Bothnian Bay. 

 

  



   

 

   

 

Conclusions 
Here we show that satellite and drone based remote sensing approaches, combined with underwater 

acoustic and imaging methods are promising for monitoring the extent of submerged marine habitats, as 

well as coastal reeds. The main results from piloted methods are summarized in Table 6. These approaches 

will offer efficient tools to support the monitoring needs of the EUs Nature Restoration Regulation. These 

methods will also support the development of Essential Biodiversity Variables, especially those focusing on 

ecosystem extents. 

Table 6. Summary of results for piloted habitats 

Habitat Objective Piloting result 

Reed beds Extent 
monitoring 

Satellite based Bayesian data analysis method 
has been developed that can be used to 
monitor reed bed coverage outside shoreline  

Seagrass meadow 

Optical remote sensing Extent Multiple examples show that SAV can be 
mapped from remote sensing imagery which 
allows the monitoring of seagrass meadow 
extent. Differentiating the proportion of 
seagrass from other plants within the meadow 
is not feasible.  

Echo sounding with drop-video Lower growth 
limit, height, 
condition 

Acoustic methods can be used to delineate 
lower growth limit of seagrass meadows and to 
measure vegetation height. Possibilities for 
condition assessments with video data. 

Fucus beds 

Optical remote sensing Extent Piloted methods indicate potential to map wide 
Fucus belts, but methods need more 
development and validation to be applicable for 
large areas. 

Echo sounding with drop-video Lower growth 
limit, height, 
condition 

Fucus stands are not easy to identify from echo 
sounding data, but suitable substrate can be 
identified. Fucus height is measurable on 
smooth bedrock surfaces but more challenging 
amongst boulders and rocks of varying size. 

Sheltered stonewort habitats 
(lagoon) 

Extent Mapping has been demonstrated with drone 
imagery. Chara tomentosa is possible to 
separate by spectral signal  

Exposed stonewort habitats Extent, 
(condition) 

Initial tests indicate that SAV mapping from 
remote sensing combined with acoustic field 
mapping can be used to estimate stonewort 
extent. Possibilities for condition assessment 
from drop-video to be piloted. 
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