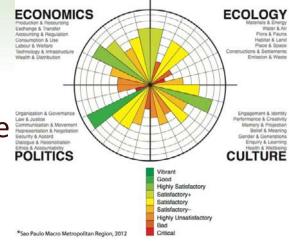
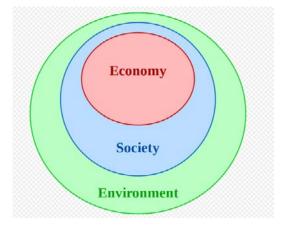
Assessment of Sustainability at protected areas

Kalev Sepp

Materials from: Jaak Kliimask, Lecturer Tiiu Kull, Professor Marika Kose, Lecturer Antti Roose, Researcher Diana Elisa Tammiste, MSc Student

Palmse 12. November 2019

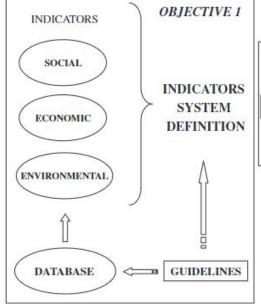




- Concept of sustainability
- Cultural landscapes and settlements vitality index
- Visitor monitoring system in Estonia
- Visitor counting. Our experiences
- Bog surface carrying capacity trampling experiment in Kullisoo, Estonia

Sustainability

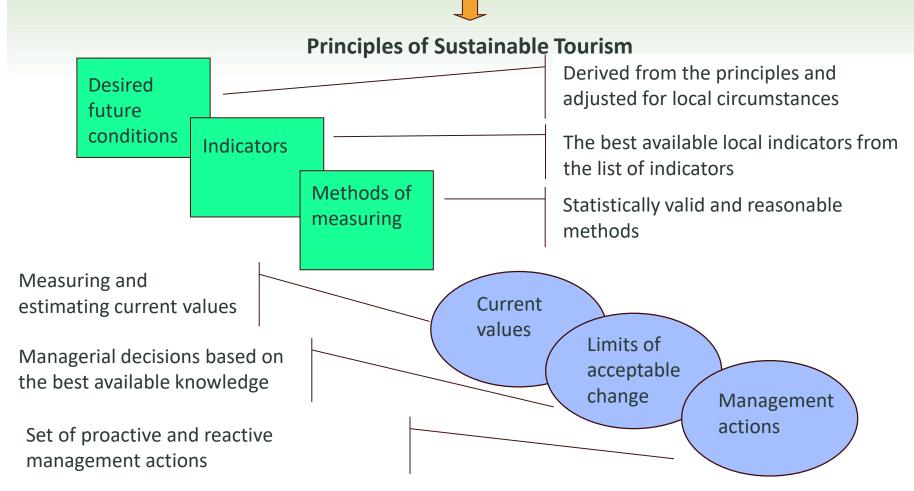
- **Sustainability** is the ability to exist constantly.
- The capacity for the biosphere and human civilization to coexist.
- The sustainability of natural ecosystems can be defined as the dynamic equilibrium between natural inputs and outputs, modified by external events such climatic change, etc
- Modern use of the term sustainability is <u>broad</u> and <u>difficult to define precisely</u>
- The Circles of Sustainability approach distinguished four domains of economic, ecological, political and cultural sustainability



The concept of sustainability

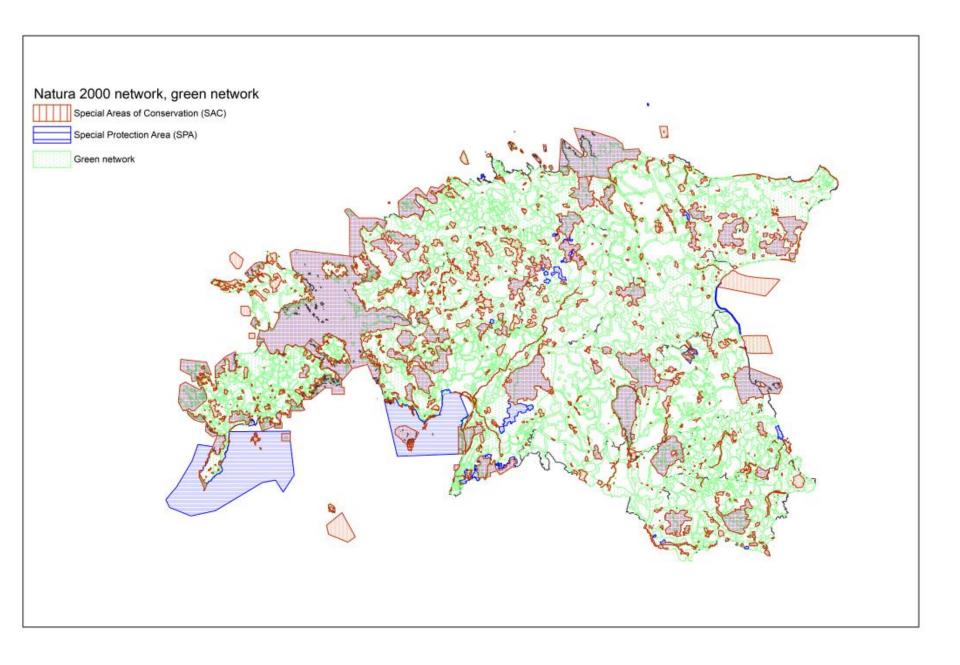
Fundamental questions:

- Which system, subsystem, or characteristics are to be sustained;
- For how long they are to be sustained;
- When we can assess whether the system has actually been sustained
- How we assess the sustainability
- What are the best indicators.
 - Social
 - Economic
 - Environmental


The concept of sustainability in South-America

- The concept of the "threshold of sustainability." This is the minimum level of investment in the tourism management capacity of a protected area needed to ensure that the area's natural capital does not decline.
- The threshold of sustainability is reached by ensuring adequate investment in each of five key management capacity areas:
 - impact monitoring;
 - basic infrastructure;
 - security;
 - interpretation and information;
 - staff salaries and training

Social indicators of sustainable tourism


Sustainability issue	Practical component	I,	Indicator
Social–cultural effects of tourism on the host	Capacity of services for sports activities	I _{K1}	Sports facilities per inhabitant
community	Capacity of health services	I _{K2}	Health-care equipment
	Capacity of transport services	I _{K3}	Number of passenger transport vehicles per inhabitant
	Capacity of financial services	I _{K4}	Number of financial establishments per inhabitant
	Capacity of other services	I _{K5}	Number of service sector establishments per inhabitant
	Capacity of chemist's services	IKG	Number of chemist's per inhabitant
Local public safety	Tourist satisfaction with destination safety	I _{K7}	Evaluation of destination safety by tourists
Conservation of the cultural heritage	Heritage designated as assets worthy of cultural protection	IKB	Number of cultural sites designated as "assets of cultural interest"
	Voluntary contributions to preservation of cultural heritage	I _{K9}	Number of cultural volunteers
	Intensity of heritage use	I _{K10}	Pressure on cultural heritage
Effects on the local population	Sustaining population levels	IKII	Variation of population levels
structure	Increase in the young population	I _{K12}	Percentage of young population
	Ageing of the population	I _{K13}	Percentage of non-active older population
	Population density	I _{K14}	Number of individuals per unit destination area

Limits of Acceptable Change (LAC) as Applied in Finland (Kajala, 2012) Sustainability

Protected Areas Are Used for...

- Nature protection
- Research and Education
- Outdoor recreation
- Traditional use of nature resources
 - hunting, fishing and reindeer husbandry
- Promoting local economy and communities
- Nature tourism
- Protected areas are also a living environment for locals
- Many nature protection values are related to cultural landscapes
- → Requirement of Sustainability

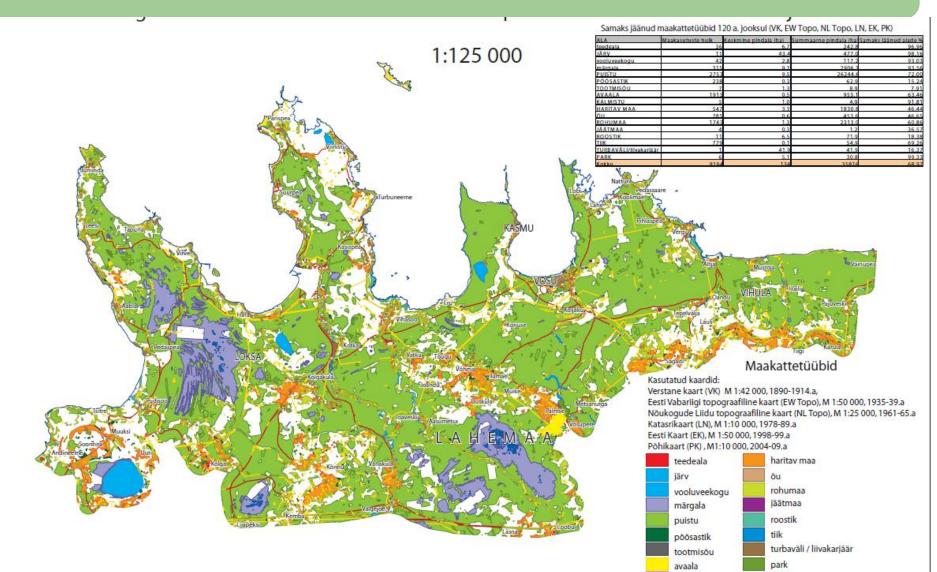
Protected areas in Estonia

All sites are protected by Nature Conservation Act as (01.09.2019):

- Protected areas:
 - National parks (6)
 - Nature conservation areas (172)
 - Landscape protection areas (153)
 - Other protected areas (63)
- Limited conservation areas (326)
- Species protection sites (609)

In total 18.8 % of Estonian land territory is protected, 95% of nationally protected areas are Natura 2000 sites

Management of protected areas


Institutions:

- Environmental Board
- State Forest Management Centre
- Environmental Agency
- Environmental Inspectorate

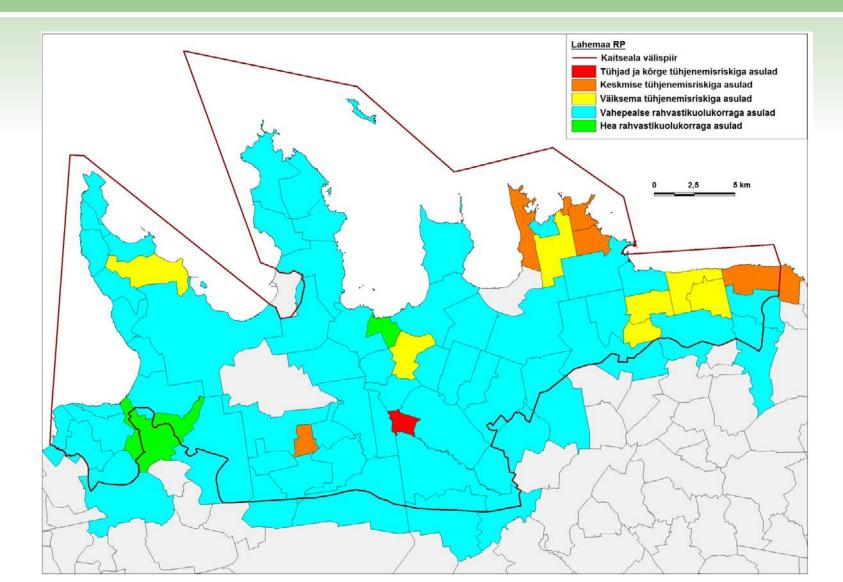
Based on protection rules and site level management plans.

EB – the administrator of all protected areas (e.g. Natura 2000 sites), also responsible for the management of the sites in private lands.
RMK – responsible for the management of protected sites in state owned lands, including restoration of habitats, visitor management etc
EEA – responsible for monitoring and databases
Env Inspectorate – responsible for supervision

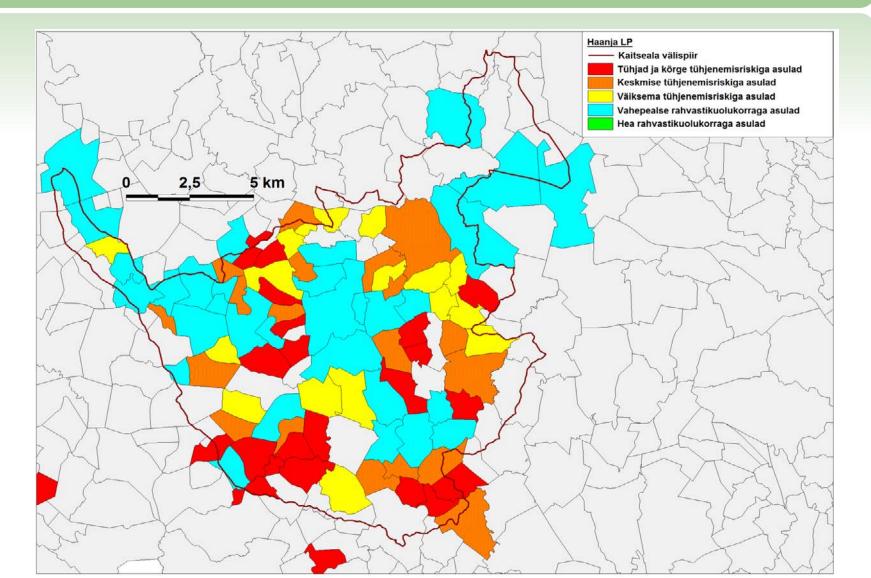
Landcover(use) change – sustainability of land cover

kalmistu

Sustainability of Cultural landscapes The Hamlets and Villages in Estonia


- Assumption: presence of settlement (and population) are absolutely necessary for maintaining valuable cultural landscapes
- This means the presence of population with balanced agestructure
- Measuring: via index of settlement vitality on hamlets/village level
- Ca 4,500 in total, Average size of population: 40; 102 of them without population (2017)
- The biggest: over 5000 inh., Average size of territory: 10 km²

Vitality Index of Settlements and Indicators


SETTLEMENTS	INDICATORS		
 Empty and with high de-population risk 	 No inhabitants; or: 100% share of population 65+; or: population present only in one 5-year age group 		
2. With medium de-population risk	 (1) Population less than 10 (5-9); (2) or: population present in two 5-year age groups; (3) or: 50+% share of population 65+; 		
3. With smaller de-population risk	(1) Population less than 10 (5-9);(2) or: population present in three 5-year age groups;		

Results: Settelements Vitality				
	ESTONIA, TOTAL	PROTECTED AREAS	LÜMANDA PARISH	
1. Empty and with high de-population risk settlements, %	5	10	8	
2. With medium de-population risk settlements, %	8	11	12	
3. With smaller de-population risk settlements,%	7	9	16	
1+2+3	20	30	36	

Results: Settlements Vitality Index in Lahemaa National Park

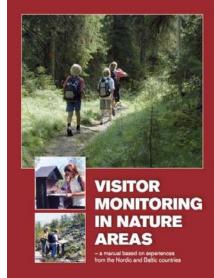
Results: Settlements Vitality Index in Haanja Nature Park

Types of Settlements Vitality

	Growth type		Score	Class
1. period	2. period	3. period		
			10	1. Viable
			6	2. rather viable
			5	2. rather viable
			4	2. rather viable
			3	3. rather non-viable
			1,5	3. rather non-viable
			1	3. rather non-viable
			0	4. non-viable

Types of Settlements Vitality. Protected areas

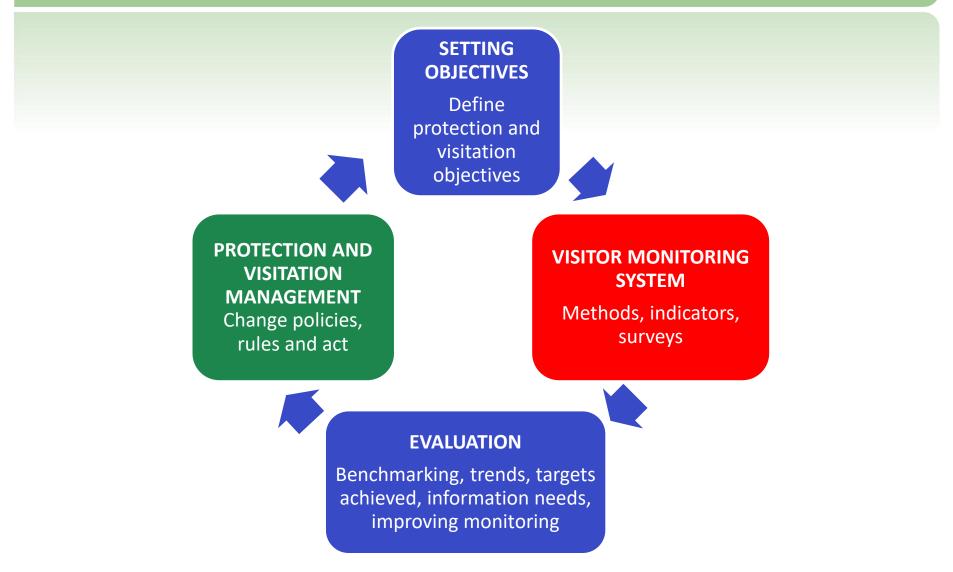
					Average score
				Ahja	4
				Kurtna	3
				Alam-Pedja	2
			Soomaa	2	
	1000	2000	2011	Lahemaa	2
	1989	2000	2011	Vooremaa	2
				Otepää	2
Average				Kõrvemaa	2
(arithm.) score	1.5	2.1	1.8	Emajõe Suursoo	1
()			1.0	Karula	1
	2.0	1 5	1 5	Loodi	1
Median score	2.0	1.5	1.5	Silma	1
Share of non-				Matsalu	1
viable				Paganamaa	1
settlements, %	60	41	32	Puhtu	1
	•••	. —		Endla	0
				Nigula	0


Controversial objectives of protection and visitation: Estonian case

- Developing the nature protection system (env. board, state forest management centre, tour operators, local authorities, etc): the need for a formalised cross-sector monitoring system that ensures better services, articulates needs, maintains recreational value
- Sites with low levels of visitation are primarily visited by the locals and the more adventurous independent travellers, few crowded heritage sites
- Growth of visitation and use of sites, changes over time rather quickly

Estonian background:

historic review of surveys and experiences


- 1977-85: visitation surveys in Nigula, Viidumäe protected areas and in Sõrve Saaremaa
- 1988: Roosaluste on recreation impact on wetland communities
- 1980-90s: Forest Institute on recreation impacts on forest, cadastre of recreational forests
- 2002: RMK run visitor monitoring and surveys
- 2003: Leito&Poola survey on tourism impact on Kõpu coastal plants
- 2006: Sepp&Noorkõiv survey in Elva
- 2007: Kajala (ed) Visitor Monitoring manual
- 2008: Roose survey combining monitoring methods
- 2009: State Forest Centre began automatic counting
- 2009: Hurt et al methods to assess carrying capacity
- 2011: Roose & Sepp et al visitor monitoring methods, manual
- 2017: Kullisoo experiment. Bog surface carrying capacity
- 2019: Mobile positioning at Lahemaa and Alutaguse national Parks and Methodology how to measure vistor impact

Estonian background: Institutional settings

- RMK (State Forest Management Centre of Estonia) has pioneered and run visitor monitoring and surveys systematically since 2002 in forest sites
- Environmental Board has initiated comprehensive system development in 2009-2011.
- Visitor monitoring is still quite loose and needs harmonising in regard of multitude of stakeholders and multi-layer nature protection system

Visitor monitoring model – integrated into protection management

Objectives of visitor monitoring system

To introduce comprehensive national visitor monitoring system for nature protected areas

- Reporting and statistics
- Assessment of protection actions (efficiency) and change monitoring, human impact
- Reacting to inconsistencies and mitigating risks in case of negative impacts
- Planning protected area management and efficiently allocating resources
- Local development dimension: economic and social added value of nature tourism

Visitor monitoring system three modules

Visitor counting

- Counting:
- Manual
- Semiautomatic
- Automatic

Impact monitoring

- Biophysical features
- Field surveys on indicators
- Ecosystem and landscape surveys
- Impact assessments

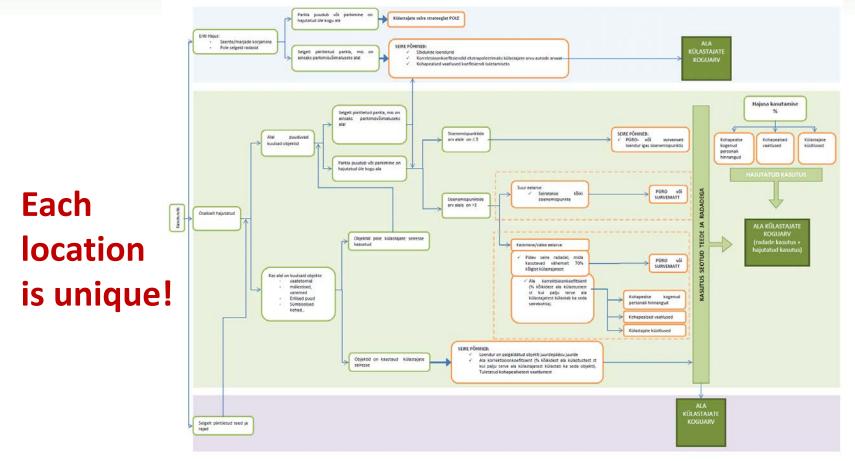
Visitor survey

- Visitor questionairre
- Client surveys

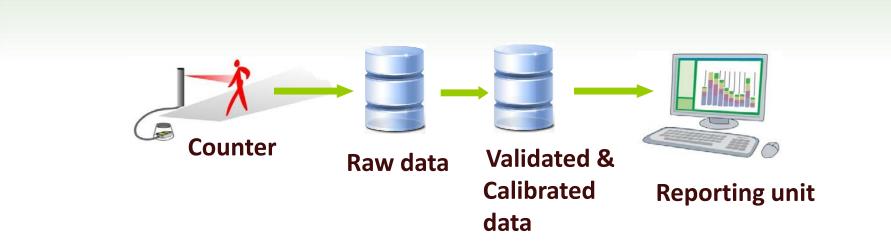
Visitor monitoring method

- Based on best practice and data (testing and piloting)
- Applicable on protected area and regional level, allows national reporting and international comparisons
- Based on instrumental and automatic monitoring, analysis is based on latest research methods, critical approach, impact assessment
- Applicable by area officers and rangers

Indicators of visitor monitoring


Module	Indicators		
	Number of visitors annually		
I Visitor counting	Number of visitors – weekly max		
(3 indicators)	Number of visitors – daily max		
	Trends		
II Impact on physical environment and trail	Weight of category		
erosion	Changes/trends in category		
(3 indicators)	Unplanned trails		
Il Ecological impact (0, 2 indicators)	Status class of Natura area (A, B, C),		
II Ecological impact (0-2 indicators)	Status of indicator species		
II Firewood and waste management	Volume, uncontrolled fireplaces, uncontrolled		
(3 indicators)	littering (location)		
II Quality of infrastructure	Status aless		
(1 indicator)	Status class		
III Visitor survey (10 indicators)	Charateristics of visitors (age, sex, education, activities, overnights rate, motives, satisfaction, expenditures, arrival mode, location of origin)		
III Entrepreneur survey and feedback (2 indicators)	Number of accommodation units, staff		

Criteria for selection of monitoring site


Criteria	Condition	Weight
Type of protected area	National park Landscape protection area Nature protection area	5 3 2
Visitor infrastructure at Natura priority areas		3
Visitor infrastructure	Visitor's centre, trail, tower etc (more than 3 units)	3
Location from country centre	Areas located near-by city or up to 20 km	3
Accessibility	Good Average Poor	3 2 0
Tourism impact on protected area (previously)	<u>Expert assessment:</u> high Average Low	3 2 0
Attractive leisure spot (e.g beach)		3
Event site (concerts, sports etc)		3

Visitor counting

Decision tree – choosing technical solution and monitoring scheme for specific area. Based on physical impact: 1) Type of tourism use; 2) Geography and location; 3) Parking; 4) Attractive spots; 5) Trails



Data processing: Data flow from the counters to the end-user

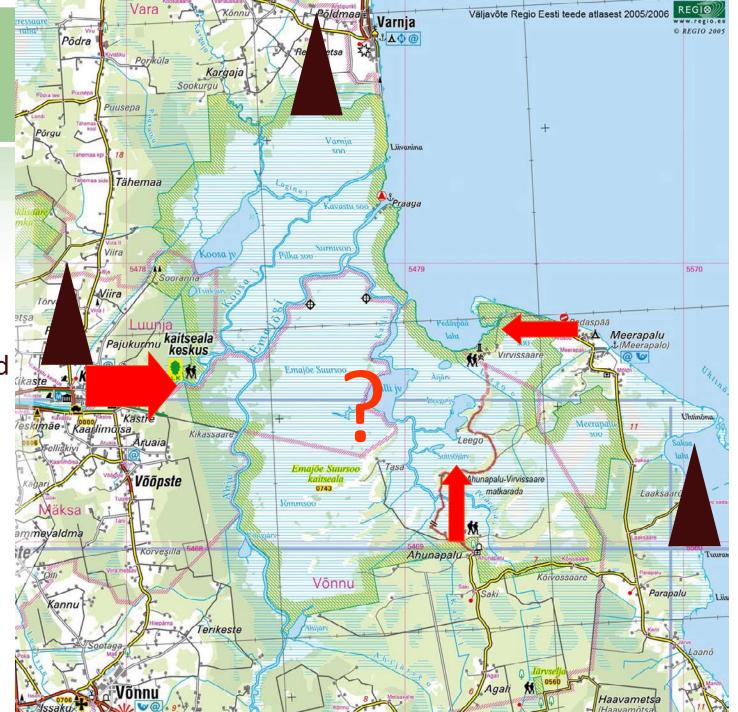
- Monitoring requires validated and calibrated data
- Both raw data and calibrated data have to be kept in different databases to avoid misuse and misinterpretations.

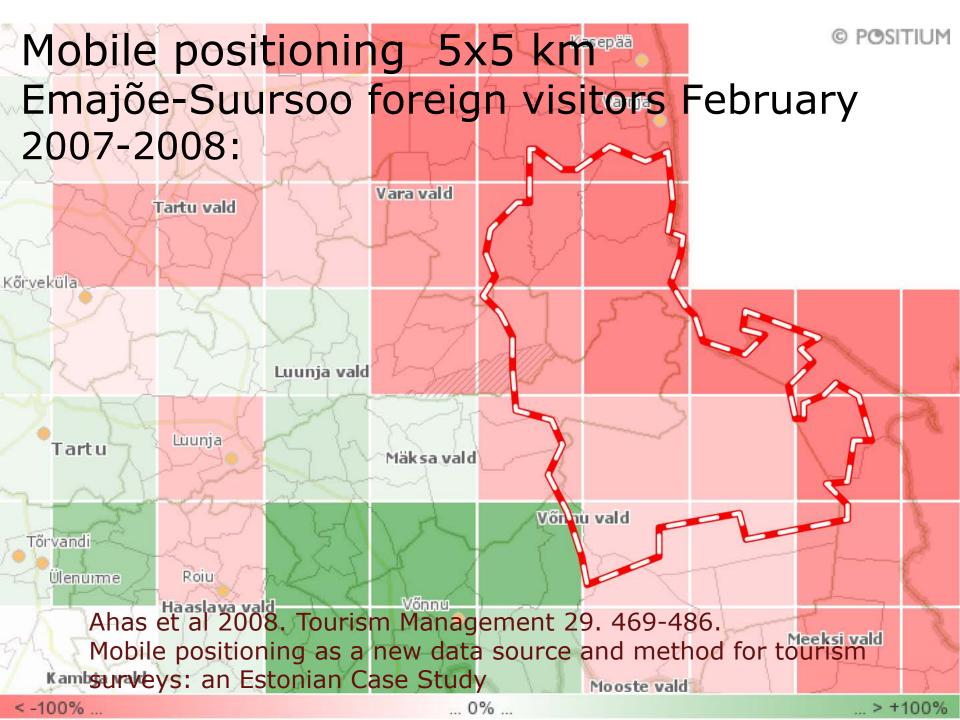
Two counting systems – one unified database

- Data is centralised and processed in one single database for consistency and homogeneousity
- Allows for quick and simple data storage and retrieval
- Allows for easy access to data
- Allows for simple analysis and comparison of data
- Serves as a backup

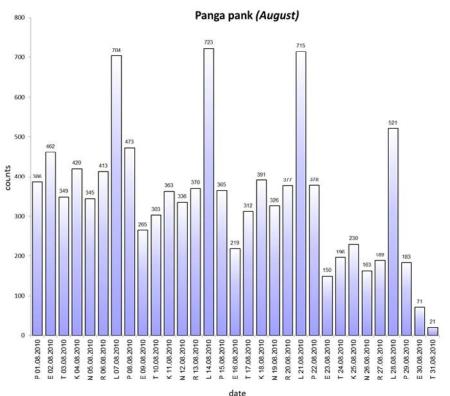
Visitor counting

Vooremaa landscape reserve:


Open cultural landscape, multiple gates, commonly accessed by numerous points around the perimeter

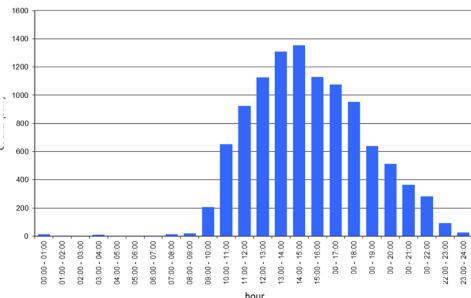


Visitor counting


Emajõe Suursoo mire reserve

Few gates (3), naturally protected, straightforward monitoring scheme

Visitation reporting templates: Day-of-week and Time-of-day



Time-of-day profile

Hourly counts are summed over one month to identify peaks of use within a day, trends and patterns of use

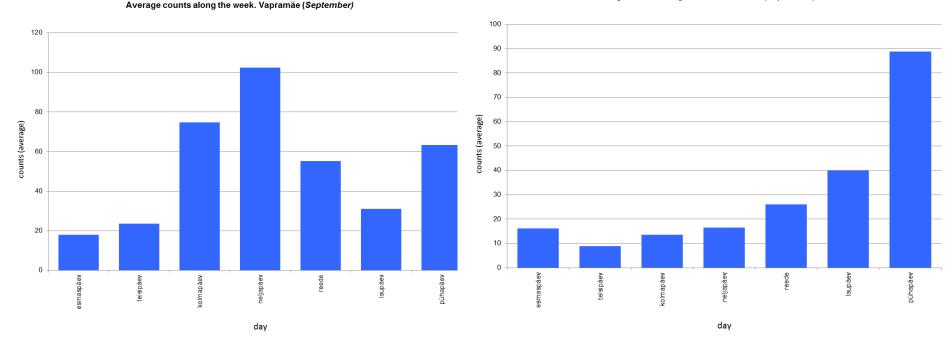
Total daily counts

Daily totals are reported on monthly basis to explore pattern of visitation.

Sum of hourly counts. Panga Pank (August)

Visitation modes according to day-of-week profiles

Vapramäe near Tartu/Elva


Soomaa Ingatsi trail

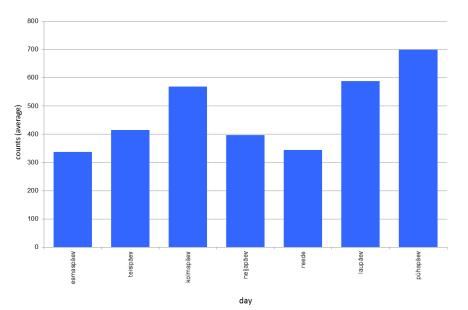
September 2010

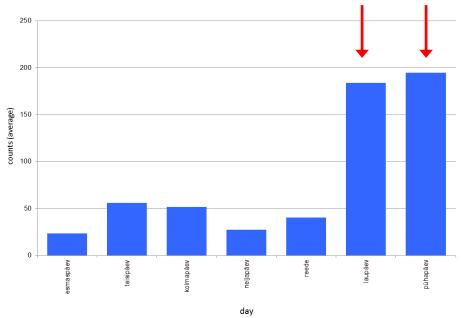
Periurban destinations

Weekend destinations

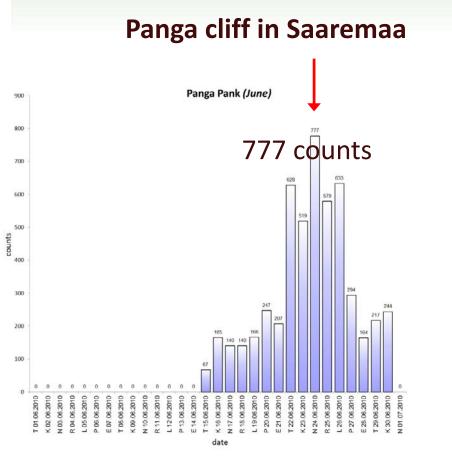
Average counts along the week. Soomaa (September)

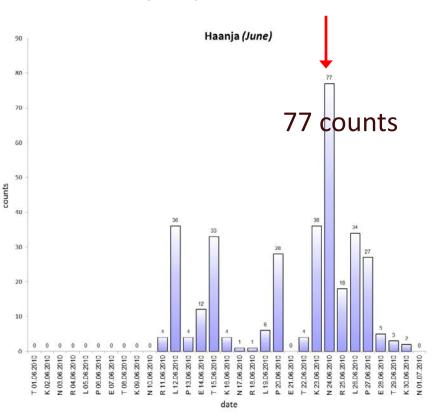
Visitation modes according to day-of-week profiles


Panga cliff in Saaremaa


Peak season: July 2010

Average counts along the week. Panga Pank (July)


Low-season: September 2010



Visitation modes according to day-of-week profiles

Midsummer Day 24 June, 2010

Haanja upland Vällamäe trail

Issues concerning visitor monitoring system and methods

Institutional barriers

Methods:


- Statistical confidence levels?
- Locational matters: area-specific, zoning, hot spots?
- Financial constraints and cost-efficiency

Bogshoeing in Estonian mires – is it a problem?

- The mires are important resource in nature tourism and their role is increasing
- The ancient devices bogshoes (rääts, padin jms) were taken in use about 10 years ago (used all year round)
- The remote bogs have become accessible to numerous travellers
- With increasing interest there may occur negative impact on mire ecosystems (trampling, disturbing, other?)

More than 20 companies offering bogshoes hiking in ca 45 bogs in Estonia (Erit 2019)

Methodology?

- Good methods for wildlife and mineral soils
- Some papers on trampling in bogs, no good information about recovery
- No papers or methods about bogshoeing

Foto: Räätsad. (Räätsade rent)

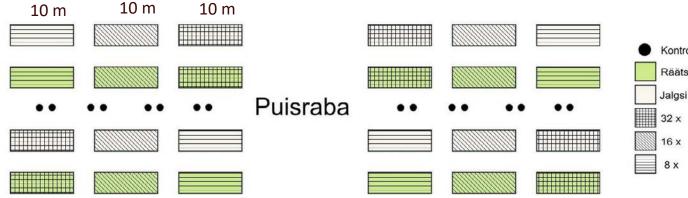


Foto: Räätsamatk. (Sportland Kõrvemaa Matka ja Suusakeskus)

In 2017- ... a comparative trampling experiment in Kullisoo, by foot (boots) and by bogshoes

- 3 habitat types: wooded bog, open bog with cottongrass and hollows and wooded cottongrass bog
- **3 trampling loads:** 32 times x 10 days, 16 times x 10 days, 8 times x 10 days

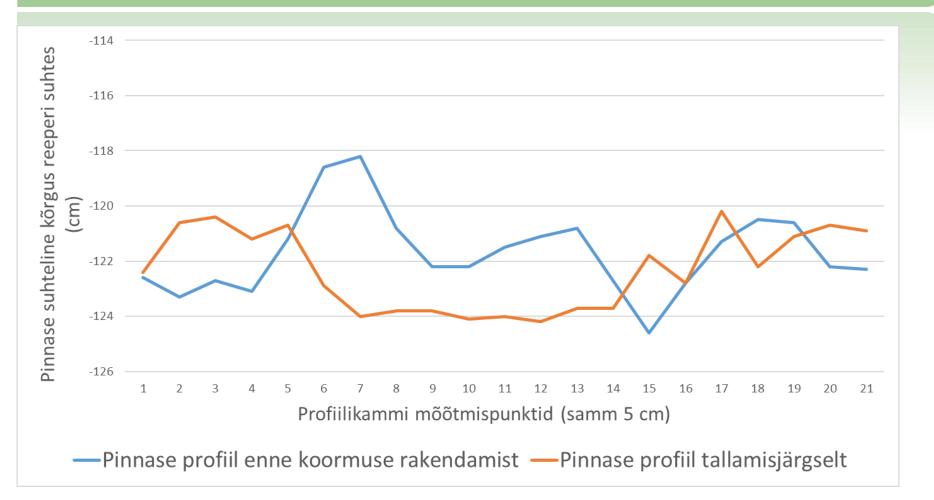
How to measure the impact/path on peat?

- Transects 10 m, 4 plots on each
- Geobotanical analyse 0.5 x
 0.5 m plots
- Surface profile (compared to reference flagpole)

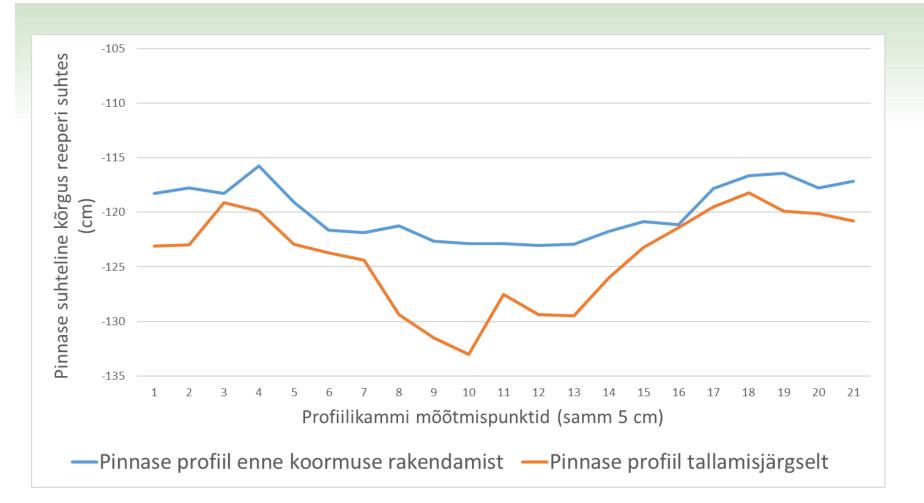
MEASUREMENTS:

- 2017 July (trampling)– Sept-Oct
- 2018 August Sept
- 2019 late August

Some results (visual estimation):


- Bogshoes leave as noticeable traces on bog surface as ordinary trampling by foot in most habitats and microforms
- Small groups/trampling loads (8 x 10) recover well in 2 years by both trampling types
- Bogshoe damages in wet sites with heavy loads become well evident only after some years (hard to estimate, if *Sphagnum* is dead or not)
- *Sphagnum rubellum* is more tolerant than others to trampling and is first moss to recover

Timeline: Bog woodland, 16 x 10, bogshoe


46

By bogshoes

Wooded bog, trampling by bogshoes (32x) blue – before and red after trampling $\frac{1}{47}$

By foot, in the wooded bog, 32 x 10

Wooded bog, trampling by foot (32x) blue- before trampling, red – after trampling

Timeline: Wooded bog with cottongrass, bogshoe, 32x10

Timeline: open bog, bogshoes 32 x 10

In wet habitats, hollows, the impact is bigger than in ohter places!

Bogshoe, 32 x 10, in 2018

Small groups do not leave visually significant impact

Bogshoe, 2018, 8 x 10

Developing visitor mangement policy and infrastructure

- Visitor management system should be unified with protection policy and system, harmonised with protection plans and measures
- To intensify visitor counting and visitor questionnaires and to move forward to carrying capacity surveys.
- Focus on target group based management & marketing not just universe message and action-lines