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Sensor fusion in 3D is doable nowadays through careful experimentation.



Theses regarding optical RS (of forested — open mires)
GENERAL

- Foliage is dark in VIS, bright in NIR, highly spectrally correlated

- Anything wet or moist is darker

- Optical signals comprise volumetric scattering

- At-target lllumination is a complex issue, At-sensor signal even more

- Usually a strong target effect (variance component)

- Intra-class variation and between-class overlap of spectral features




PASSIVE WITH IMAGES

- Reflectance calibration for reliable HCRF observables is at max 10-20% accurate,
modern photogrammetric sensors come with absolute calibration (wide band spectral
radiance)

- Directional reflectance ('BRDF') effects due to shadow casting are observable but not
really exploitable (in a multi-view setup)

- Having hyperspectral observations usually results in compromises regarding sensor
geometry

. Otherwise the use of line-sensors would be preferable (BRDF complexity reduction 4D
-> 3D)

- Multi-view analyses have become the standard, even multi-image matching (SfM)

- Occlusions and shadow-casting hamper the interpretation as does the contribution
from the background (consider e.g. sparse canopies)

- New possibilities for small areas (research, sampling based approach) with unmanned
platforms



LIDAR
- LIDAR monostatic view-illumination geometry is superb (4D BRDF -> 2D)
- Pulsed LiDAR enable depth imaging, shorter pulses, stored WFs for better deconvolution

- Receivers are still rather slow (impulse response) and SNR remains low because
of eye-safety. Dynamic range issues nowadays resolved with dual receiver designs (& SFL)

- Canopy transmission losses cannot be accurately estimated -> interpretation of
subsequent backscattering is ill-posed

- No two LIDAR datasets are comparable because of the radar theory explaining the
influence of target geometry on the signal. Especially an issue in low-altitude acquisitions
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Some empirical work



Lakkasuo (62N, 24E) study in 2009, REGULAR, AFFORDABLE airborne discrete-return
LIDAR from 1 km, having 1-7 pulses/m2, @ 1064 nm.

To what degree can we reconstruct hummaock-hollow variation (topography) - to later
predict the site type

What does LiDAR intensity data reveal about the vegetation?

Echo triggering in mire vegetation - How does the vegetation influence the geometry
of near-gnd data

Area-based (10 x 10 m) habitat classification in using LiDAR features. What features
are meaningful and how they describe the distinguishable characteristics of each
habitat (site type)?

https://www.mv.helsinki.fi/home/korpela/Hyytiala/Ojitus animaatio.html




Sitkaneva study in 2014-15. Helicopter-borne (300 m AGL) simultaneous acquisition of
waveform recording lidar (SWIR @1550 nm) and multi-view RGB-imagery. Classify
(ombrotrophic pine-ridge) bog microforms at 20 cm resolution for a 16-ha area. 20-60
pulses/m2.

Can we harness the target-specific '‘BRDF-effects' to enhance interpretation?

Can we reconstruct the topography accurately enough and come up with good topographic
predictors of the microforms?

What is the benefit from having both the discrete-return data and waveforms, do WFs
carry information about the presence and type of field layer?
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Major findings



Lakkasuo Habitat classification with LIDAR

EERhK G008

Bl LhK
Bl RhSK
B RhSR
[ RhSN
[ 1RhRiN
[ TMK
[ 1KgK
[ IVSK
[ IvsN
1 PK
[ 1VSR
[ LkR
[ KgR
B KR
B TSR
B TR
M R
Bl LkN
Il KeR
Il RaR

==

] no error
Ll minor
Il gross

s

e







Lidar height distribution (canopy profiling) was characteristic to growing stock (site)
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Table 11. Confusion matrix of SVM mire site-type classification using Expert variables from 20 x 20-m squares. Classification accuracy was 50%
cells denote minor errors in site-type classification. Allowing for minor errors, the accuracy was 70%.
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SIIKANEVA microforms with WF-LIDAR and multi-view RGB

FIG 1 A close range view of the study area with outlined vegetation classes: 1 = high hummock (HHU)
ridge with 1-6-m high pine trees, 2 = hummock (HU), 3 = high lawn (HL) with reddish Sphagnum
rubellum, 4 = Lawn (L), 5 = hollow (HO). 6 = mud-bottom (MB) with Rhynchospora alba, and 7 =
water (W). Cottongrass (GC) tussocks are pale greyish.



illumination

Fig. 2. Illustration of ‘sensor fusion on the bog surface’. Camera and LiDAR are operated concurrently
such that the same surface patch is seen in several images (exposed at short intervals) and is sampled
densely by LiDAR. The return waveform (blue) preserves its shape in well-defined surfaces, while a
tilted or rough surface, or, volumetric vegetation extends it. Image observations are influenced by
directional reflectance properties of the targets, as the view direction (camera-target ray) changes,
when the camera is moved. B = backscattering, F = forward-scattering.
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FIG 4 A 200%200-m aerial image from May 2013. The EC tower is in the center (350999.7E,

6859303.5N 1n UTM33). Darkest surfaces are water (W). Grayish surfaces are mud-bottoms (MB).
Shadows of 1-5-m-high pines are barely visible on the ridge hummocks. Green-yellowish depicts
hollow (HO) and lawn (L) surfaces (Table 1). The sub-image on the right shows an area of 19 by 28
meters.
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FIG 5 Location of the 756 vegetation field plots of 2014.




FIG 6 Illustration of the HU-IND (large values only). FLATNESS and INTENSITY feature maps. The
white cells are WATER. FLATNESS peaks in slopes. INTENSITY is high in hummocks and low in

water, hollow and mud-bottom.



TABLE 4 DEM features implemented in QGIS (Quantum GIS Development Team 2015), ArcGIS (Esri
Ltd, Redlands, CA, USA), GRASS GIS (GRASS Development Team 2015), or in an in-house
photogrammetric workstation.

Feature Description

SDEV Standard deviation in a 3x3 (30x30-cm) window. Local surface roughness and/or slope.

SLOPE & QGIS 2.10: maximum rate of change in a 3x3 window. The range of slope values.

SRANGE

HU-IND A ‘hummock index’ that looks for the minimum elevation up to a distance, in eight cardinal
directions, and computes the difference.

DEPR-IND | A ‘depression index’. Collects elevations from the eight cardinal directions up to a distance and
fits univariate regression to each direction. Computes the sum of the coefficients, which are
assigned +1 or -1 for positive or negative coefficients. A ‘perfect peak’ is 8, while -8 corresponds
to a depression. Finds the small-scale variation in the mire surface.

FLATNESS | Computed in a window by taking the smallest sum of elevation differences among the eight
cardinal directions. Indicates if the point of interest has a local flat surrounding in at least one of
the directions.

DISTHUM | Distance to closest hummock border (HU-IND > 0.2 m). The thresholded HU-IND raster was
processed twice with the majority filter in the Spatial Analyst of ArcGIS. Then, unique labels were
given for each contiguous area. This raster was converted into vector format and areas smaller
than 10 m? were removed. Finally, the Euclidean distance tool was applied to create a map with
distances to the closest hummock.

Texture Textural features Contrast, Entropy, Angular Second Moment and Inverse Distance Measure

features were derived in GRASS. The features were computed in 3x3 and 5%5 neighborhoods.




Table 6. Partition of DN (mean values in 5x5 window) variance between the terms of the mixed-effects models
(Eq. 3). Percentages (%) of total variance.

Anisotropy  Target Residual
Class R G B R G B R G B
HHU 31 28 34 60 62 56 9 10 10
HU 20 13 17 61 75 69 19 12 14
HL 12 7 10 69 83 77 19 10 12
L 7 8 8 79 82 80 14 10 12
HO 5 12 8 83 73 81 12 15 11
MB 5 5 4 79 74 79 16 21 17
CG 25 17 25 67 74 68 8 9 7
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FIG 8 GRN band mean feature as a function of x in Eq. 1. HO shows an increase also in the forward
scattering geometry (x<0°), while HHU shows a decrease.
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and (b) Sphagnum mosses with field layer vegetation. The labels ‘XXX’, ‘XXXDom’, ‘XXX-YYY’ are
interpreted as 'Species XXX is found', 'Species XXX dominates' and 'Both XXX and YYY are found',
respectively. Abbreviations are given in Table 2. Azimuth difference is limited to 90°+45° (stratum)

to constrain the directional effects. Note that groups are not limited and for example S. balticum can

FIG 10 Boxplot comparison of the R/G image feature in plots vegetated by (a) Sphagnum mosses only
occur in groups ‘Maj’, ‘MajDom’, ‘Maj-Cus’, etc.
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FIG 12 Boxplot graphs of three LiDAR features. FWHM refers to ECHOW feature.
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FIG 13 Boxplot of the hummock index (HU-IND) in vegetation plots, where Sphagnum moss species

occurred in various combinations. See also Figure 11 for an interpretation of the classes.
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TABLE 11 Comparison of classification results (%) within a radius of 150 m from the EC tower. The
standard error estimates in percentage points are given in parentheses for the 2012 (systematic cluster-
based) field inventory and are based on the random sampling assumption.

Class RF LDA Field

\\Y% 23 23 20(09
MB 159 172 158(2.0)
HO 199 142 192(2.4)
L 269 295 18.2(2.2)
HL 72 50 12.8(1.8)
CG 06 53 - ()

HU 11.0 109 10.8(1.6)
HHU 162 156 21.2(2.5)

Table 12 Neighborhood relations between classes (%). For example, 36.7% of the 3x3-neighborhood pixels of
high lawn (HL) pixels belong to the same class, while 23% belong to hummock (HU). DB = white wooden
duckboard (manually delineated). (See Figure 14). All cells are non-zero.

MB HO L HL CG HU HHU Tree W DB
MB 85 54 86 13 01 14 03 0.1 03 00
HO 39 719 21.7 08 02 04 05 05 01 00
L 43 152 663 79 09 44 07 03 0.0 0.0
HL 25 22 300 367 20 230 3. 04 00 0.1
Ce 21 56 300 184 273 136 2.1 09 00 0.1
HU 18 07 115 157 10 548 140 05 0.0 0.0
HHU 03 07 13 15 01 100 816 45 0.0 0.0
Tree 0.1 0.7 05 02 00 04 47 934 0.0 0.0
W 33 16 09 01 00 01 0.1 0.0 938 0.1
DB 10 14 24 11 01 08 08 1.6 03 905
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